<img alt="" src="https://secure.smart-enterprise-acumen.com/270613.png" style="display:none;">
Skip to content

OILY WASTEWATER

A guide to understanding how to identify and treat your oily wastewater

Overview

On this page you will find:

  • A breakdown of the different categories of wastewater, regardless of industry
  • Issues that are typically faced during the treatment of oily wastewater 
  • The variables that go into choosing the right chemical treatment plan
  • How to maximize treating your oily wastewater 

 

Categories of Oily Wastewater

Each manufacturing plant has its own unique wastewater. However, despite the industry, oily wastewater can be broken down into 4 categories. Thus, no matter how unique the water is, it is going to fall into at least one of these categories. Understanding what category of oily wastewater your plant produces will help lead to using the correct treatment equipment and chemicals.

 

 

Emulsions

Emulsions

For this kind of oily wastewater, droplets of oil are dispersed throughout water. Water is the dispersion medium and is in the continuous phase, while oil is in the dispersion phase. The oil must be removed from the water for the water to meet discharge requirements. This is typically done using demulsifiers, which allows for the coalescence of the oil droplets, which allows for the removal of the oil droplets. In the case of emulsions, the oil contained in the water is typically waste oil, therefore the product quality and preserving the water is more important than the product quality of the oil.

 

Inverse Emulsions

Inverse Emulsions

Inverse emulsions are the opposite of emulsions. This type of oily wastewater refers to droplets of water dispersed within oil droplets. In this case, the water is a by-product of producing the oil and thus must be removed from the oil. It is especially important to completely dehydrate the oil droplets in order for refineries to meet crude oil requirements. This is typically accomplished with reverse emulsion breakers, which assists in the separation of the water from the oil.

 

Total Dissolved Solids

This kind of oily wastewater has small particles dispersed throughout. The main characteristic is the particles are not able to be filtered out with filter paper. Eventually, the particles will settle to the bottom under the natural influence of gravity, but this is a time-consuming method of treatment - not ideal for a plant trying to maintain productivity standards.

 

Suspended Solids

Similar to colloidal suspension, suspended solids consist of particles in the water. Typically, suspended solids are floating in the water, rather than dispersed. These particles are usually larger and therefore quicker to settle out than colloidal suspension. Since the particles are larger they can be filtered out much easier, but often treatment still requires coagulants and flocculants to speed up the process.

WT - List of Chemical Companies ThumbnailDownload List of Water Treatment Companies: If you’re ready to start evaluating companies, here is a list to get you started. Included in this guide are some of the top water treatment companies in the United States.

 

Common Treatment Issues

 

Dissolved Air Flotation

 

GreenFloc_Dissolved_Air_Flotation_Unit

Poor DAF performance usually results in solids carry over which can cause increased surcharge cost and possibly discharge violations as well. The single biggest reason for DAF failure is poor dissolved or “white water” quality which is the mechanism for water/solids separation. Improper air pressures and recycle flows are typically the main culprits. Improper chemical selection and or dosage can impact DAF performance as well through the production of microfloc instead of macrofloc. The larger the floc particle the more surface area for the air to attach itself to and therefore more effective solids separation is achieved.

 

Sludge Build-Up

 

Sludge is a by-product of treating suspended solids and colloidal suspension. It is a collection of the solids, typically on the bottom of the treatment system. If there is too much sludge in any of the treatment equipment, the equipment will have to be turned off and sludge needs to be manually removed, which equates to wasted time and money. A build-up of sludge in a DAF system that is too thick of a blanket can result in solids carry over, and decrease the effectiveness of the DAF. 

 


 

Read how one company saved $46,000 a year by lowering their sludge disposal cost

 


 

Product Quality

This is especially important for the food and beverage industry and oil and gas industry. If the wrong chemicals are being used to treat wastewater, specifically water that is intended to be re-used throughout production, this can affect the overall quality of the produced items. In the food and beverage industry, if stillfood_ind contaminated water is used to produce food, then that food will not meet quality standards and will thus result in money lost. Similarly, if crude oil is not completely dehydrated, then it cannot be put through the refineries, resulting in delays and potential waste of precious fossil fuels.

 

Water Re-Use

Since water is a charged resource for facilities, it is imperative to be able to re-use the water that is already in the plant. One example of this is in industrial paint spray booth systems. The water must be treated before it can be recycled. If it is not treated properly, then this can effect the product quality, as well as effecting the equipment since contaminated water is running through the systems.

 

Oil Sheen

An oil sheen on discharged water can mean shutting down production until the sheen is removed. Thus, is it especially important for manufactures, specifically in the primary metals and oil and gas industries, to act in preventing the formation of the sheen

How to Chose the Right Treatment Plan

Any of the above treatment issues are typically a direct result of using the wrong chemistry to treat you wastewater. Alongside this, although every wastewater falls into at least one category, each waste stream is still unique and requires a hands on process in  order to determine the correct product and most importantly dosage of said product. The infographic below shows the flow of data collection and testing necessary in order to chose the right treatment plan.

Chosing Product GF

Maximizing Your Oily Wastewater Treatment

It is vital to find a chemical company that understands all of the factors necessary to maximize the performance of your wastewater treatment. By working with a company willing to develop unique solutions to treat your unique emulsions, you are able to lower treatment dosages and lower your overall use cost. Dober's GreenFloc Natural Coagulants are specifically formulated to treat oily wastewater do this for you. We go further by providing you with more than just a typical sample ‘kit’. We providing you with the services you need and the best chemistries for water and oil emulsions in the market today.

 

 

REQUEST A SAMPLE NOW